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PREFACE

In today’s world, there’s an electronic gadget for everything and inside
these gadgets are circuits, little components wired together to perform some
meaningful function. Have you wondered how a led display sign works or
how a calculator works or toy cars work? How is it possible?? Answer, all
because of electrical circuits. These tiny components when arranged in
certain manner can do wonders. Fascinating isn’t it? Our fascination with
gadgets and reliance on machinery is only growing day by day and hence
from an engineering perspective, it is absolutely crucial to be familiar with
the analysis and designing of such Circuits, at least identify components.

Circuit analysis is one of basic subjects in engineering and particularly
important for Electrical and Electronics students. So circuit analysis is a
good starting point for anyone wanting to get into the field. It is a very easy
subject to learn and understand, but messing up these ideas or
misunderstanding them, will lead to a lot of headache in other subjects. In
this book we provide a concise introduction into basic Circuit analysis. A
basic knowledge of Calculus and some Physics are the only prerequisites
required to follow the topics discussed in the book. We've tried to explain
the various fundamental concepts of Circuit theory in the simplest manner
without an over reliance on math. Also, we have tried to connect the various
topics with real life situations wherever possible. This way even first timers
can learn the basics of Circuit theory with minimum effort. Hopefully the
students will enjoy this different approach to Circuit Analysis. The various
concepts of the subject are arranged logically and explained in a simple
reader-friendly language with illustrative figures.

This book is not meant to be a replacement for those standard Circuit theory
textbooks, rather this book should be viewed as an introductory text for
beginners to come in grips with advanced level topics covered in those
books. This book will hopefully serve as inspiration to learn Circuit theory
in greater depths.
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Readers are welcome to give constructive suggestions for the improvement
of the book and please do leave a review.
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1. INTRODUCTION

1.1 ELECTRICAL CHARGE

Have you ever wondered what Electricity is and where it comes from? To
answer these questions, we have to start with the atom. Although we are
more interested in the properties of electricity than the phenomenon itself, it
wouldn’t hurt us to quickly discuss the basics.

Everything in the universe is made of atoms and every atom consists of 3
types of particles, neutrons, protons and electrons. Neutrons and protons are
packed together in the nucleus and make up the center of an atom, whereas
the electrons move around the nucleus in a constant motion. For this
discussion, we are only concerned about protons and electrons or more
specifically, a property these two particles possess called the Electric
Charge. Although it is very unlikely you’ll ever come across a proper
definition for charge, the best we can come up with is, that charge is a form
of electrical energy. Protons have a positive charge and Electrons have a
negative charge. In a normal atom, the number of protons is equal to the
number of electron and thus the atom as a whole is electrically neutral.
Neutral objects aren’t of much interest to us, we are more interested in
charged bodies. Electric Charge is denoted by the letter Q.
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The SI unit of electric charge is Coulomb (C) and it is the charge possessed
by 6.24 x 10'® electrons.

1.2 CURRENT

Previously we mentioned that free electrons are responsible for the flow of
Electric Current. The concept behind this phenomenon is very simple,
whenever a charged particle moves, it produces an Electric Current.
Obviously the protons can’t move, because they are inside the nucleus. And
the electrons close to the nucleus are held tightly by the force of attraction,
so they can’t move either. So the only way an Electric current is produced is
through movement of outer electrons, called the free electrons (it’s a little
different in electronics though).

To understand this better, consider the inside section of a Conductor as
shown below.
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Conductors have tons of free electrons and they keep moving in random
direction (due to thermal energy), and each of these small movements
contribute to an Electric current. You might be thinking, if an electric
current is produced this easily in a conductor, why do we need batteries and
generators and power plants and stuff. Can’t we just hook up a small piece
of copper wire to a bulb and be done with it. Unfortunately, that won’t
work. That’s because the currents produced by each free electron are in
random direction (in accordance with the direction of their motion) and
when we consider the conductor as a whole, these currents cancel each
other out and net current is zero.

The way out of this problem is to make all the free electrons drift in one
direction and thus the net Electric Current adds up to a non-zero value. To
do this all we need is a little effort, a force of sorts, called the EMF or the
Electromotive Force. We will discuss more about the EMF in the next
section.

So Electric Current can be defined as the flow of charge (electrons) when
subjected to an EMF. Or the more accurate definition would be, Current is
the rate of flow of charge. Mathematically, Current I is equal to,
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The unit of current is Ampere, named after French mathematician and
physicist André-Marie Ampere. One ampere of current represents one
coulomb of electrical charge moving past a specific point in one second.

1.3 EMF

EMF stands for Electromotive force. The name may give you the
impression that electromotive force is a type of force. Actually, it is not. As
mentioned in the previous section, EMF or the Electromagnetic force is an
energy that can cause current to flow in an electrical circuit or device. This
means that a current can flow in a circuit or a device, only if an EMF is
provided. Sources of EMF can be batteries, solar cells, generators etc. EMF
is denoted by the symbol E and is measured in unit Volt (V).
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Current

EMF

Source

1.4 POTENTIAL DIFFERENCE

Both EMF and Potential Difference are closely related and are often used
interchangeably in many places, but they aren’t the same quantities. When a
current flows through a material, the electrons are accelerated due to the
applied EMF. But these electrons don’t gain much velocity, because they
keep colliding with ions in the material and due to this, the kinetic energy of
the electrons is converted to heat. What this means is that, the electrons at
one of the material has more energy than the electrons at the other end,
which leads to a potential difference. This obviously is a rough explanation,
the actual physics behind phenomenon is more complex and beyond the
scope of this book. It is important to note that, Potential difference is always
measured between 2 points and never at a single point.

To sum up, the EMF is the driving force that keeps electrons in motion and
Potential difference is the difference in energy of the electrons as a current
is passed through a material. Both EMF and Potential difference have the
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common unit Volt (V). The term Voltage can be used in place of Potential
difference or EMF.

1.5 OHM’S LAW

From the previous sections itself, it must be pretty clear that the Voltage and
the Current are two closely related quantities. They have a cause effect
relation as given by this general equation:

Cause
Opposition

Effect =

Where the Voltage is the cause and the Current is the effect. Now the
question is, what could possibly be the opposition to current? This is where
we introduce a quantity called Resistance. The concept of Resistance is
analogous to friction in mechanics. Every material has a tendency to oppose
current, but some more than the others. Materials with large no. of free
electrons like metals have low resistance or a low tendency to oppose
current. Such materials are called Conductors. Whereas materials with
small no. of free electrons like plastic have high resistance. Such materials
are called Insulators. And some materials fall in between, they offer some
resistance, but not very high either. They are called Semi-conductors.

Now let’s substitute the terms we introduced so far into our general
equation from earlier.
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Voltage
Resistance

Current =

| = — |<== Ohm’s Law

The result is this beautiful equation called the Ohm’s Law, after the German

physicist and mathematician Georg Simon Ohm (weird name right??). It’s
one of the most fundamental things there is in electrical engineering. Get
used to it, because it will remain with you as long as you do anything
electrical related.
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The Ohm’s law essentially implies that, the current flowing through a
material/circuit is directly proportional to the Voltage applied across it,
provided that the resistance of the material remain fixed. So if we were
to apply twice the voltage across a bulb, twice the amount of current would
flow through it or if we apply one third the voltage, then one third the
current would flow. Graphically the Ohm's law would look like,

1

!
V¥  Resistance

| Slope =

V

The Unit of Resistance is Ohm and is denoted by the Greek letter €.

1.6 CONDUCTANCE

While we are at it, let’s define one more new quantity called Conductance.
Conductance is the inverse of Resistance. It’s a measure of how well a
material allows current to flow through it. The Unit of Conductance is
Siemens and is denoted by Q.

1.7 RESISTOR
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Have you seen one of these tiny components in an electronic circuit
before??

K74 -

Those are resistors. A Resistor is a device that provide resistance in an
electrical circuit. WHAT?? But isn’t resistance a bad thing? Yes, resistance
does oppose current and it does cause energy loss. But when used the right
way it isn’t always a bad thing. Do you know that resistance is the reason
we have bulbs and heaters? Resistors are electrical components that help
control the flow of current in a circuit. A high resistance means there is less
current available for a given voltage. It is widely used in heating
applications, for biasing, voltage dividers and tons of other applications.

The symbol for resistor is:

o— o
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1.8 POWER

Electrical power is defined as the rate at which electrical energy is
transferred from an energy source to a circuit. When current is passed
through a resistor, energy is dissipated as heat. It is easy to calculate
Electrical power, it is simply the product of the current (I) flowing through
a component and the voltage (V) across the component.

Applying the Ohm’s law, 2 other forms of equation can be obtained,

\/2
PER
P =12R

Unit of electrical power is Watts.
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2. VOLTAGE & CURRENT
LAWS

2.1 SERIES CIRCUIT

A series circuit is a circuit in which any number of components are
connected one after the other, such that there is a single path for the flow of
current. For example, in the circuit shown in the figure below, the Resistors
R, and R, are in series, because they are connected at a common point b.

Similarly, Resistor R, and the Voltage source are also in series, with the

a N b

common point C.

C

If there were any other components (that carry current) connected at any of
these nodes (a, b or c), then this circuit wouldn’t be a series circuit
anymore. For instance, if there had been a third resistor R, connected

between nodes a and b, as shown in the figure below, this is no longer a
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series circuit. Clearly there are 2 paths for the current to flow, through R, &
R..

R,
N

C

2.2 KIRCHHOFF’S VOLTAGE LAW
(KVL)

Kirchhoff’s Law’s....Wait!! “Laws ” you say?? You mean there’s more than
one law?? Yes, there are 2 Kirchhoff’s Law’s: Kirchhoff’s Voltage law &
the Kirchhoff’s Current Law. Kirchhoff’s laws are the most fundamental
laws, next to the Ohm’s law, in Electrical engineering. But fortunately, just
like the Ohm’s law, these are 2 really simple laws. Even simpler than the
Ohm'’s Law I would say, because there is no formula, just a simple
statement. The entire basis of Circuit analysis are these 2 laws and the
Ohm’s law. They are basically spin offs to the energy and charge
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conservation laws. We’ll get to the Kirchhoff’s Current Law in later section.
For now, we’ll focus on the Kirchhoff’s Voltage Law or the KVL.

Kirchhoff’s voltage law (KVL) states that “the algebraic sum of the
potential rises and drops around a closed loop (or path) is zero”.

DV =0

Closed Path

Symbolically,

In layman’s terms Kirchhoff’s voltage law essentially means: “Voltage
supplied = Voltage used up, around a closed loop”.

Forming a KVL equation is really easy, start at a certain point of the circuit
and note down all the potential changes (either rises or drops) in one
particular direction, till the starting point is reached once again. Then equate
the resulting expression to zero. That’s it.
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For the above Circuit, KVL equation is E -V, -V, = 0 or E (Voltage
supplied) = V, +V, (Voltage Used up). Do note that KVL is applicable to all
loops or closed paths, however complex the circuit maybe.

2.3 RESISTORS IN SERIES

When dealing with a circuit containing large no of components, it’s a smart
thing to simplify the circuit. This applies to resistors as well. A combination
of resistors, be it series or parallel or otherwise can be replaced by a single
resistance, called the equivalent or the effective resistance of the circuit. For
a series combination of resistors, the equivalent resistance is found by
simply adding the individual resistance values. Mathematically,
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Reqg = Ry + Ry+ oo + Ry

= Zf:v=1 R;

The proof for this is pretty straight forward. Consider our example (first
one) from section 2.1. Let V, & V, are the voltages across the resistors R,

and R, respectively. Using KVL, we know V =V, + V,. Therefore,

R, =K=V1+V2=V1 +V2
9 7 I I I

R

eq =R1+R2

2.4 VOLTAGE DIVIDER RULE

In the last section, we saw that in a series connection, the resistors share a
common current, but have different voltage drops across them. Now we will
try to find out the exact magnitude of the voltage drops. For that we use the
Voltage Divider Rule.
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V= wVys Ry

From Ohm’s law,

E E

R +R,+R, R,

Then the Voltage drops across the resistors are:

V,=1IR,,V, =IR,, V5 = IR,

ER ER ER
— 1 — 2 — 3
Vis Ve Va= g
T T T

To sum up, the Voltage drop across a Resistor in series connection is given,
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_ (Voltage across combination) x (Resistance R)

VR_

Total Resistance

2.5 PARALLEL CIRCUIT

A parallel circuit is a circuit in which any number of components are
connected across 2 common terminals, such that they share a common
voltage. For example, in the circuit shown in the figure below, the Resistors
R, and R, are in parallel, because they are connected between the same

terminals a and b. The current will be divided amongst the resistors,
according as their resistance values.

a

b

2.6 KIRCHHOFF’S CURRENT LAW
(KCL)

According to the Kirchhoff’s Current Law, the algebraic sum of the
currents entering and leaving a node or a junction of a circuit is zero.

www.bookbenefits.com



It’s easily evident that this law is derived from the Law of conservation of
charge. The idea is really simple, once a current is generated in a circuit, it
is distributed throughout the circuit. It cannot just accumulate in a wire or
vanish into thin air.

Symbolically,
Z [ entering — Z [ leaving

Consider the example shown below and let’s formulate the KCL equation
for node a. At node a, there are 3 currents, one entering and 2 leaving.
Hence the KCL equation is, I = I, +L..

2.7 RESISTORS IN PARALLEL

For a parallel combination of resistors, the reciprocal of the equivalent
resistance is the sum of the reciprocals of the individual resistances.
Mathematically,
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21—1 R

Consider our example from section 2.1. Let I, & I, be the currents flowing
through the resistors R1 and R2 respectively. Using KCL, we know I =1, +
L,

1 1 L+, 1 ]

— =1 2_71422
R__ =
qu V V VvV

1_1+1

Req Rl Rz

2.8 CURRENT DIVIDER RULE

The Current Divider Rule is used to determine the magnitude of current
entering each branch of a parallel connection.
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From Ohm’s law,

E E, E

_IR;
~ S Flr 1,

To sum up, the Current flowing through a Resistor in parallel connection is
given by,

| = (Total Current ) x (Total Resistance)
=

Resistance R
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2.9 OPEN & SHORT CIRCUIT

Short Circuit is a condition where two points in a circuit are directly
connected to each other through a path of zero resistance. The voltage
across the 2 points will be always zero in case of a short circuit.

Short Circuit Open Circuit
R, Ry
ANAN_2 ANNAN a b
V— R, V= R,
b

Open Circuit is exactly the opposite condition as short circuit. In case of an
open circuit, there is no connection between two points in a circuit and
hence no current flows between the 2 points.
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3. BASIC ANALYSIS
TECHNIQUES

3.1 ENERGY SOURCES

There are basically 2 types of energy sources: Voltage source & Current
source. Again they can be classified as ideal & practical sources. First we’ll
discuss ideal sources then consider practical sources.

3.1.1 Voltage Source

An ideal Voltage source is an Energy source which gives constant
Voltage across its terminals irrespective of the current drawn by the
load connected to its terminals. At any instant of time, the voltage
across the terminals remain the same. Thus the V-I Characteristics
of an ideal voltage source is a straight line as shown.




I

V-l Characteristics

But it is not possible to make such Voltage sources in practice.
Practically, all Voltage sources have a small internal resistance. For
analysis purposes, we assume that this internal resistance is in
series with the voltage source and is represented by R... Because of
R,., the voltage across the terminals decreases slightly with the

increase in the current.

Rse |
—’\MI\—~—£—|
" + practical
Q/D Load | |VL /
- > .
L

V-l Characteristics
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VL=VS- ||_R

se

Usually, Voltage sources are manufactured keeping the internal
resistance to the minimum, such that it acts more or less like an
ideal voltage source (till a max load current limit). Batteries are an
example of Voltage source.

3.1.2 Current Source

No prizes for guessing what a current source is, an ideal current
source is a power source that gives constant current, irrespective of
the voltage appearing across its terminals

I,

| Load Vi
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V-|I Characteristics

But a practical Current source hardly ever functions this way. In a
practical Current source, the current decreases slightly as the
Voltage across the load terminals increase. This behavior can be
analyzed by considering a high internal resistance, represented by
R, in parallel with the source.

L /|

|
I *—> ideal -
sh * / practica
| Cf) %R Load A
- sh
o

’VL

V-l Characteristics
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3.2 COMBINATION OF SOURCES

In many circuits, it is necessary to use multiple energy sources. Analyzing
such circuits directly is a bit of a mess. So what we usually do is to reduce
the multiple sources to a single equivalent source, making the analysis a lot
easier. Like the resistors and other circuit components, power sources too
can have series or parallel combinations.

3.2.1 Combination of Voltage sources

If two Voltage sources are in series i.e. they are connected back to back, the
effective voltage is simply their algebraic sum. It is important to consider
their polarities while doing so. If their polarities are the same, then the
effective voltage is their sum and if their polarities are opposing, then the
effective voltage is the difference of the 2 voltages.

o
+
Same '@D E7 )
PolarityN\, + — _C) VitV
@ .
@
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.

Opposite '@D — )

Polarity - _<> L
V) ;

+

Unlike a series connection, any two Voltage sources can’t be combined in
parallel. Practically, only Voltage sources of the same magnitude are
combined in parallel. If 2 unequal Voltage sources are connected in parallel,
there will be a circulating current between them. Essentially what happens
is that, the smaller voltage source is acting as a load for the larger voltage
source. The magnitude of the current will depend on the value of the
internal resistances of the 2 sources. Since the internal resistance is usually
very small, a very large current flows, leading to overheating and possibly
irreparable damage. Don’t even think about connecting 2 ideal voltage
sources in parallel, results could be catastrophic. And If you somehow
manage to connect two voltage sources in parallel without damaging
anything, the voltage across the combination will be somewhere between
the 2 values depending on the internal resistances.

If 2 equal voltage sources are connected in parallel, the single equivalent
source will have the same voltage as the 2 sources. The only reason to do
this would be if the load requires a higher current than the source can
supply by itself. Other than that, no good can come from connecting 2
voltage sources in parallel.

3.2.1 Combination of Current sources
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Connecting two Current sources in series is a bit like connecting two
Voltage sources in parallel. It’s simply not a good idea. There are very few
cases where such connection is required in practice, but that’s a rarity. In
any case only 2 current sources of same magnitude are connected in series.
The magnitude of single equivalent source will supply the same current as
the individual sources. Connecting 2 different Current sources in series is a
violation of the Kirchhoff’s current law. Again, you don’t want to be
messing with Kirchhoff!! The problem with connecting 2 unequal current
sources in series is that, you are asking the small current source to supply
more than hat it is capable of. Intuitively, this means one source is trying to
push more charge than the other source is capable of accepting.

If two current sources are connected in parallel, the effective current output
of the combination is their algebraic sum. If the sources are in opposite
direction, then the single equivalent source will produce current in the
direction of the larger current source.

& 8
l l, — I 4+ 15

& ]

$ #
L , = -1,

& @
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3.3 SOURCE TRANSFORMATION

In some circuits, you will encounter the presence of both current and
voltage sources. This makes things a little trickier. Lucky for us, it is
possible to convert one type of source to other type and it’s pretty
straightforward.

Consider a voltage source having an internal resistance R_, connected to a
load resistor R, . Now consider a current source having an internal
resistance R, supplying the same load. If the two supplies were to be

equivalent, then the load current (or voltage) should be the same in both
cases.

RSQ

-
Ry “ |1<1‘> Reh Ry

The current delivered by the voltage source is given by,
I —_— 1
se L

And the current delivered by the current source (applying current division
rule) is given by,
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R, +R,

Equating both equations,

—— =
1
R _+R, R +R,

Now if we equate the numerators and denominators separately, we get,

Rse =Rsh
&
Vl = I1 Rsh

Once the sources are transformed into same kind, they can be easily
combined in series or parallel, as we did in the previous section.

3.4 MESH ANALYSIS
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Using Circuit analysis techniques, we are essentially trying to find the
voltage across or current through a component in a circuit. Two of the most
popular and basic analysis techniques are the Node and the Mesh analysis.
These techniques were developed as an extension to the KVL and KCL.
We’ll learn about Mesh analysis in this section & Node analysis in the next.

In mesh analysis, we are dividing the circuit into areas or loops called
Meshes and assigning them a Mesh current. Consider the circuit below, just
from observation, we can identify 3 loops or meshes. Do note that, these
loops have some common components. Now assume a loop current to flow
in each of these loops and give them a random direction (although normally
we assume clockwise direction as in the figure).

At first glance, this may seem like extra work, but it’s worth it, because
reduces the no. of equations significantly, making calculation very easy.
Now let’s try out an example.
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Consider the circuit below, it has 2 voltage sources and a bunch of resistors.
Simply through observation, we can identify 3 meshes. Let’s assume
currents I,, I, I. flow through the 3 meshes respectively.

10 50 20

Now let’s consider each mesh separately and form equations using KVL.
Do note that the 5Q resistor is common to both meshes A and B, so the
current through it is the difference of the two mesh currents (because the
currents are in opposite direction w.r.t 5Q resistor.)

10

— 1 ()\/

| 5Q
A

L, +5(1,— 1) =10
= 61, -51,=10
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Similarly we form equation for the other too meshes.

50

2Q)

Sl # 2(ls— 1) #5(lg= 14 ) =0
= 12l =51, =2l =
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21+ 2(lc— 1) = -5
= 4. -2l =-5

Now we have 3 unknown variables I,, I, I.and 3 equations. This can be
easily solved using the Cramer’s rule or by substitution.

3.5 SUPER MESH

Mesh analysis is all well and good, but what if a current source is present in
the circuit?? We could assign an unknown voltage across the current source,
apply KVL around each mesh as before, and then relate the source current
to the assigned mesh currents. This is generally the more difficult approach.
The easier method is to create something called the Super Mesh. Super
Mesh is basically a mesh formed by combining 2 adjacent meshes, ignoring
the branch which contains the current source.

For example, in the circuit below, we create a Super Mesh by combining
meshes A and B. The Super Mesh equation can be obtained by applying
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KVL to the super mesh, ignoring the common branch (that contains the
current source).

|, + 5lg + 213 =10
= |, + 7l =10

The second equation relating the 2 mesh currents can be obtained by
applying KCL to the common branch. In our example, it is,

3.6 NODAL ANALYSIS

Much like the Mesh analysis, Nodal analysis is another commonly used
circuit analysis technique. The Nodal analysis is based on KCL, whereas
Mesh analysis is based on KVL. Before we go any further, we need to
define a node. A Node is simply a point where two or more circuit elements
meet. Let’s try using Nodal analysis in practice. We’ll use the same circuit
we used in Mesh analysis example to get a better understanding between
the similarities and differences between the two techniques.
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Node 1 Node 2

\ Reference

Node

The first task in Nodal analysis is to identify the nodes in the circuit. Do
note that, in Nodal analysis, we are only interested in nodes where 3 or
more components meet. If we were to consider all the nodes, the method
will still work, but the number of steps will increase. In our example, we
can identify 3 such nodes. The next step is to assume one of those nodes as
a reference node (usually the bottom one is chosen). The idea is assume
zero voltage/potential at a point (Reference Node) in the circuit, so that we
can measure/calculate voltage at different points with respect to this
reference point. Once the Reference node is fixed, assume voltages at the
other nodes (V,, V,, V, etc.). Once these things are taken care of, it’s time to

look at the nodes separately and form node equations.
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Reference
Node (0V)

Applying KCL at Node 1,
V,—10 V

1 +_1+g:0
1 5 5

=6V, -V,-50=0

Similarly applying KCL at Node 2,
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V1 50 V2 20
20 5V
Reference
Node (0V)

Vo ([Vai5 VTV
2 2 5

=12V, -2V, -25=0

Solving these equations, we can obtain the node voltages and the rest of the
parameters.

3.7 SUPER NODE

In some circuits, a voltage source maybe present between 2 nodes. To deal
with such circuits it’s best to use the Super Node analysis. The first step is
the same, to identify nodes and assign nodal voltages. Once that is done, we
need to create something called the super node, by combining the 2 nodes
ignoring the voltage source in between them. Then to obtain the super node
equation, KCL is applied to both the nodes at the same time. The current
through the common branch can be ignored, because the current exiting



node 1 and the current entering node 2 are the same and hence they cancel
out when taking the combined KCL equation.

Vv, Vx_ Vv,
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The second equation connecting the 2 nodes can be obtained by equating
the difference between the 2 node voltages to the voltage of the source i.e.
V, -V, =V_. All the other nodes can be treated as before and corresponding

node equations can be found.






4. NETWORK THEOREMS

While the circuit analysis techniques discussed so far, are very handy for
simple circuits. They aren’t are the preferred choice for more complex
circuits. For that we need the help of some theorems. The idea is to use one
or more of these theorems to convert the complex circuit into a simple
equivalent, which can be easily analyzed using our familiar basic analysis
techniques. Let’s look at these Theorems one by one in detail.

4.1 SUPERPOSITION THEOREM

Analysis of circuits having multiple energy sources is not the easiest of
tasks, but Superposition theorem provides an easy solution to this.
According to the Superposition theorem, the effect or response in a
component when 2 or more energy sources (voltage or current sources)
are applied together is equal to the sum of effect/responses when the
sources are applied individually. This may seem complicated, but that’s
just the statement, the application is very easy.

What the Superposition theorem really does, is to convert a circuit with n
energy sources into n circuits with a single energy source acting
individually, so that they can be analyzed individually and the results can be
added up. To study the effects of one particular energy source on the circuit,
the other sources need to be eliminated. This can be done by Short
Circuiting the Voltage sources and Open circuiting the Current sources,
which are not under consideration.

Now let’s try and use the Superposition theorem in practice with the help of
an example. In the circuit shown below there are 2 energy sources, one



current and one voltage source and suppose we need to find the voltage
across resistance R,.
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1. First thing to do is to split up the circuit into 2 circuits with a single
energy source, as shown above.

2. In the first circuit, as the current source is open circuited, the branch
containing resistance R, is no longer relevant. By using the voltage

divider rule, the voltage across Resistor R, can be found as,

, V
Vr2 _R1+R2R2

3. In the second circuit, the voltage across R, can be determined with the
help of the current division rule.
R 1 R 2

N _
VRZ

_R1+R2|



4. Once these results have been calculated, all you to do is to combine
these results together, to find the voltage across the resistor R, due to

the both sources acting simultaneously.

_ ’ 7
Vi, = Ve + Vi,

4.2 THEVENIN’S THEOREM

In circuit analysis, we often encounter large circuits and most times we are
interested only in a portion of the circuit, and not the circuit as a whole. In
such cases, the analysis is cumbersome and the possibility of making errors
is very high. Lucky for us, French engineer Léon Charles Thevenin found a
solution. It’s what’s known as the Thevenin’s Theorem.

According to the Thevenin’s theorem, any two-terminal, dc network can
be replaced by an equivalent circuit consisting of a voltage source and a
series resistor.

Rry

Complex
Network

Thevenin Equivalent

V,, 1s called the Thevenin equivalent voltage and R, is called the Thevenin
equivalent resistance. The Thevenin’s theorem enables us to replace a large


https://en.wikipedia.org/wiki/L%C3%A9on_Charles_Th%C3%A9venin

part of a circuit, often a complicated and uninteresting part, with a very
simple equivalent.

With the help of an example, let’s see the Thevenin’s theorem in action.
(We have used a simple circuit for better understanding.)

31 60

QV =
T 6() 100

In the circuit shown above, let’s try to find the current through the 10Q
resistor.

1. Firstly identify the part of the circuit, whose equivalent you want to
determine. In this case it’s everything except the 10Q resistor.

2. Then temporarily remove the load resistor (10€2) resistor from the
circuit.

3. To find the Thevenin equivalent Resistance (R), remove all the
energy sources in the circuit. This can be done by short circuiting the
voltage sources and open circuiting the current sources. In our
example, there is one voltage source, short it out.



30) 6Q

4. Now find the equivalent resistance between the terminals i.e. as if
were looking from the terminals. This will give the value of R,;. In

our example, 3Q2 resistor is in parallel with 6Q resistor, which are in
series with 6Q. Therefore R, = 8Q2 (do the math.)

5. To find the Thevenin equivalent Voltage (V), return the energy

sources to the way it was before, then determine the open circuit
voltage across the terminals.

30}

Do note that current cannot flow through the 6Q resistor (highlighted)
because the load resistance is open circuited and hence no voltage



drop across it. Therefore using Voltage Division rule, V., = 6 x 9/
(3+6) = 6V.

6. Now that we obtained both R.;; and V; values, we are ready to put

the load resistance back in its place and obtain the Thevenin
equivalent circuit.

Ry, = 80

=B T 1092

7. Now solving this circuit is a piece of cake. (Current through 100
resistor is 0.33 Amperes)

4.3 NORTON’S THEOREM

In the previous chapter we saw that it is possible to replace Voltage source
by a Current source and vice versa. American engineer E.L. Norton made
good use of this idea and theorized a corollary to the Thevenin’s theorem
called the Norton’s theorem.

Norton’s theorem states that, any two-terminal, dc network can be
replaced by an equivalent circuit consisting of a current source and a
parallel resistor.


https://en.wikipedia.org/wiki/Edward_Lawry_Norton
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Now let’s try the Norton’s theorem on our example from previous section.
Steps are as follows:

1. Firstly identify the part of the circuit, whose equivalent you want to
determine and then temporarily remove the load resistor (10Q)
resistor from the circuit.

2. The Norton equivalent Resistance is the same as the Thevenin
equivalent Resistance. So the procedure is the same, remove all the
energy sources in the circuit and find the resistance between the load
terminals. (R = 82Q2).

3. To find the Norton equivalent Current (1), return the energy sources

to the way it was before, then determine the short circuit current
through the terminals. (I, = 0.25 A)



4. So the Norton’s equivalent circuit is:
I = o 100)
0.25A

5. If you solve the circuit and the current through the 10 U resistor
would be 0.333A, exactly same as obtained from Thevenin’s theorem
method.

We can easily switch between the two equivalent circuits simply by doing
source transformation. In doing so we can also come up a relation between
the 3 quantities R, Iy and V.

Ryy = 80
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4.4 MAXIMUM POWER TRANSFER
THEOREM

When we connect a load to a circuit, say a speaker to an amplifier circuit,
it’s only sensible that the maximum power should be delivered to the load.
So how do we go about this?? Change the circuit to suit the load or change
the load to suit the circuit?? Both are possible, but we can’t randomly keep
altering the components, we need to figure this out on paper. This is exactly
what the Maximum Power Transfer theorem is there for.

According to the Maximum Power Transfer theorem, the maximum power
is delivered to the load, when the load resistance is equal to the
Thevenin equivalent resistance of the circuit.

First let’s make sense of this intuitively, before we go into the mathematical
proof.



We know that power is the product of Voltage and Current, so for maximum
power, both quantities need to be high. Say the load resistance is low, then
the Current will be very high, but the Voltage will be equally low. Similarly,
if the load resistance is high, then the Voltage will be high, but the Current
though it will be very low. So clearly the extremes are not the way to go. At
R, =R, both voltage and current will high enough to deliver maximum

power. It’s promising, but to confirm we need to use math.

| = ETH
Rry+Ry

P =I2R,
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To find the R, corresponding to maximum power, P, is differentiated with
respect to R;, keeping R, constant and equated to zero. If you actually
bother to do the math, you can obtain the relation R, =R ;.

The Maximum Power Transfer theorem isn’t a circuit analysis technique as
such, but rather a practical application of the Thevenin and Norton
theorems.

4.5 SUBSTITUTION THEOREM

According to the Substitution theorem, any branch of a dc network can
be replaced by a different combination of elements as long as the new
combination of elements will maintain the same voltage across and
current through, as the original branch.

For example, consider this particular of a network, it has a voltage of 10V
across it and a current of 2A flowing through it.

"o 12A +
20 10v
]. 6V

This branch can be replaced by any combination of elements as long as the
voltage and the current remains the same. Shown below are some of the
possible replacement combinations.
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Substitution theorem gives you the ability to replace complicated branches
of a circuit with convenient components to make circuit analysis simpler.

4.6 RECIPROCITY THEOREM

This is one of those nasty theorems, a bit hard to understand, and has
limited application. But we are engineers and we don’t have a choice but to
learn. According to the Reciprocity theorem, if a voltage source in a
circuit causes a current in some other part of the circuit, then the
positions of the voltage source and the resulting current can be
interchanged without a change in the current. There’s no way that you
can understand this theorem without the help of an example. Let’s go step
by step.

Consider this example, here the 10V voltage source causes a current I to
flow throw the 4 Q resistor. If you do the math, you will get the magnitude
of I as 0.45 A.



2() 6()

10V 20) 4()

Now if you interchange the positions of the voltage source and the resultant
current, you will get this circuit, shown below.

2() 6()

10V

2()
4()

The 10V source will produce a current I’ in its new position. Let’s calculate
it. We’ve used mesh analysis (but you are free to use anything) and we got 2
equations: 41’ -2I,= 0 and -2I’ +12 I,= 10. Solving them, we get I’ as 0.45A,
which is the same as before. This is what the Reciprocity Theorem is. The
ratio V/I is known as the transfer impedance.

Do keep in mind that the reciprocity theorem’s use is strictly limited to
single source circuits.






5. CAPACITANCE

5.1 CAPACITORS

A capacitor is an electrical device that is used to store electrical
energy. Isn’t that what batteries are for?? Yes...In a way, a
capacitor is like a battery, they both store electrical energy. But the
difference is in how they store energy and hence their applications
differ. In a battery, chemical reactions produce electrons at one
terminal and absorb electrons at the other terminal. Whereas, a
capacitor is much simpler, it cannot produce new electrons, it only
stores them.
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Next to the resistor, the capacitor is the most commonly
encountered component in electrical circuits. A capacitor is



constructed out of two metal plates, separated by an insulating
material called dielectric. The plates are conductive and they are
usually made of aluminum, tantalum or other metals, while the
dielectric can be made out of any kind of insulating material such
as paper, glass, ceramic or anything that obstructs the flow of the
current. In fact, you can make a simple capacitor can be made from
two strips of aluminum foil separated by two thin layers of wax
paper (Check out this instructable :
http://www.instructables.com/id/Aluminum-Foil-Plate-Capacitor/).
Of course, our homemade capacitor won’t work very well, but it
shows capacitor like behavior nonetheless.

Since the plates are made of metal, they contain a huge no. of free
electrons. In their normal state, the plates are neutral, as there is no
excess or deficiency of electrons. But when we connect a power
source to the metal plates of the capacitor, a current will try to flow
i.e. the electrons from the plate connected to the positive lead of the
battery will start moving to the plate connected to the negative lead
of the battery. However, because of the dielectric between the
plates, the electrons won’t be able to pass through the capacitor, so
they will start accumulating on the plate. After a certain number of
electrons accumulated on the plate, the battery will not have the
sufficient energy to push any new electrons. This leaves the top
plate with a deficiency of electrons (i.e. positive charge) and the
bottom plate with an excess of electrons (i.e. negative charge). In
this state, the capacitor is said to be charged. This state will remain
even after the battery is removed and the Capacitor will only
discharge once a load is connected across it.
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The ability of a capacitor to store an electric charge is referred to as its
capacitance. The capacitance C is the ratio of charge stored Q to the
potential difference V between the conductors. Mathematically,

c=2
V

So a better capacitor would be the one able to store more charge for a
particular voltage applied. Capacitance is measured in farads. This is a very
large unit and hence most capacitors are rated in microfarads or less. The
commonly used symbols for Capacitors are:



Fixed capacitor Polarized capacitor Variable capacitor

5.2 HYDRAULIC ANALOGY

A better understanding of how Capacitors store charge can be gained with
the help of a hydraulic analogy. Consider the arrangement shown below, it
consists of a water tank separated by a diaphragm D in the middle and a
piston P to force water into either side of the diaphragm.
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Under normal circumstance, when the piston is left untouched, the
diaphragm is flat as shown by the dotted line. It’s similar to an uncharged
capacitor, it has no energy. But if the piston is pushed towards the left,
water is drawn from the right side of the diaphragm and at the same time
water is being forced into the left side. Under this condition the diaphragm
is no longer flat, as shown by the full line. Greater the force applied to the
piston, more water is displaced, and hence the diaphragm is under greater
stress. The force applied to the piston is analogous to the EMF applied, and
the water displaced to the charge displaced, in case of a capacitor. Just like
the diagram separates the two halves of the tank and doesn’t allow water
from either side to mix, the dielectric separate the charge in a capacitor.

If we now remove the force on the piston, the diaphragm will try to release
its stress (energy) by becoming flat, hence pushing the piston back to its
original position. This is exactly what happens when a charged capacitor is
connected to a load resistance. A current rushes through the resistance till
the energy stored is released. The rate of flow of water is dependent on the
resistance offered by the pipes, much like the rate of flow of charge
(current) is dependent on the resistance offered by the wires.



The diaphragm will rupture if sufficient enough force is applied on the
piston, just as the Capacitor will breakdown under excess voltage.

5.3 CAPACITORS IN PARALLEL

Like with resistors, capacitors can also be connected in series or parallel
combination and to analyze such circuits, we can find equivalent
capacitance for these combinations. When a set of capacitors are connected
in parallel, the total equivalent capacitance is the sum of individual
capacitances.

Suppose two capacitors, having capacitances C, and C, farads are

connected in parallel across a potential difference of V volts. Let the charge
on C, be Q, coulombs and that on C, be Q, coulombs, where.

Q,=C,V &
Q,=C,V



If we were to replace the capacitors by a single equivalent capacitor C, then
a charge Q= Q, + Q, would be produced by the same potential difference.

Q=Q,+Q,
= CV=C,V+GCV

~C=C, +C,

This result can be extended to any no. of capacitors connected in parallel.
For ‘n’ capacitors in parallel,

Coq= GG+ +C)

5.4 CAPACITORS IN SERIES

For a series combination of capacitors, the reciprocal of the equivalent
capacitance is the sum of the reciprocals of the individual capacitances.



Suppose two capacitors, having capacitances C, and C, farads are
connected in series across a potential difference of V volts. Let he voltages
across C, and C, be V, and V, volts respectively. Obviously, because it’s a
series connection, the currents and hence the charge flowing through the
capacitors are the same.

~.Q=CV, =GV,

Q Q
$V1=C—1&V2=C—2

Now if we were to replace the 2 capacitors with an equivalent capacitor of
capacitance C, then it would have the same charge Q, when connected
across the voltage V. Also from KVL, we know that V=V, + V..

Therefore,
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This result can be extended to any no. of capacitors connected in series. For
‘n’ capacitors in series,

1 1 1
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Do note that the expression for capacitors in series and resistors in parallel
are the same and similarly the expression for capacitors in parallel and
resistors in series are also the same.

5.5 CHARGING & DISCHARGING OF
A CAPACITOR

A Capacitor doesn’t charge up all of a sudden, when connected to a voltage
source. It takes some definite time for the capacitor to become fully charged
and it does so in an exponential manner. When an uncharged capacitor is
connected to a DC source, the voltage across is zero, as if there is a short
circuit, then the voltage exponentially increases to the applied voltage after



a while. On the contrary, as soon the source is connected, the max current
rushes to the capacitor. Later as the time passes, the current decreases to
zero and acts like an open circuit. How fast the capacitor charges up
depends on any resistance present in the circuit.

Charging of a Capacitor

Vi == Imax

A fully charged capacitor will discharge in exactly the reverse manner, the
voltage drops and the current picks up exponentially.

Discharging of a Capacitor

We’ll study this in greater detail with the help of Laplace transform in
chapter 12.



5.6 ENERGY STORED BY
CAPACITORS

The energy stored in a Capacitor is basically the energy the battery
expended in moving electrons from the positive plate to the negative plate
of the capacitor against their natural tendency. Suppose a voltage V is
applied to capacitor terminals, then the work done transferring an
infinitesimal amount of charge dq from the negative to the positive plate is

dW =V dqg

The work done is a variable quantity, because as the charge accumulates,
more work needs to be done in moving the electrons. Similarly, Voltage is
also a function of charge. Hence the incremental work is given by,

_4
V=T

. _qdq
s dW ==

To find the total work done, we need to integrate this quantity from 0 to the
maximum charge Q.



This expression has different forms, based on the quantities you choose:

Q v Qv
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6. INDUCTANCE

6.1 ELECTROMAGNETISM

Firstly, Electromagnetism is a huge topic and doesn’t really have a place in
a circuit analysis text. But since we want to give our readers a proper
introduction to inductance, we will quickly go through the fundamental
ideas in electromagnetism without going into the minute details.

The most fundamental idea in electromagnetism is that there is magnetic
field surrounding every current carrying object. These magnetic fields take
the shape of concentric rings around a straight wire, called magnetic field
lines. Larger the current flowing through wire, more the no. of magnetic
field lines. These lines are not random, they have direction, which can be
determined by using the Right hand thumb rule. It goes like this, if you
point your thumb in the direction of the current, then the fingers curl in the
direction of the field lines



Direction of
Current Current

Field lines

Direction of
Field lines

Similarly, when current flows through a coil, a magnetic field is generated,
such that coil acts like a magnet with a north and south polarity. The pattern
of field lines is as shown below. Do note that field lines are concentric if
you consider a tiny portion of the coil, but these field lines add and cancel
each other giving us this effective pattern. By the way these sort of coils are
called Solenoids.



Faraday’s Laws: Michael Faraday formulated 2 laws, which form the basis
of Electromagnetic studies, called the Faraday’s Laws. These laws
introduces us to the phenomenon called Electromagnetic Induction.

According to the Faraday’s first law, when a conductor is placed in a
varying magnetic field, an EMF gets induced across the conductor and
if the conductor offers a closed circuit then induced current flows
through it.

And Faraday’s second law states that, the induced EMF is directly
proportional to the rate of change of magnetic flux.

If you place a bar magnet near a wire, nothing happens, no voltage is
induced. But if you move the magnet such that some of the flux lines
(imaginary) are cut by the wire, then a voltage is induced.

There are two ways to obtain varying magnetic field:

1. One is relative spatial movement that is, if the distance between the
magnet and the conductor keeps changing, the magnetic field also
keeps changing and induction is possible.



2. The other is to vary the magnetic field originating from the source
itself. This is not possible with permanent magnets, but it’s easy to do
with solenoid magnets we discussed earlier. All you need to do is to
vary the current through the coils, the magnetic field also varies as a
result.

Guess what would happen if we placed 2 coils close to each other, one
connected to a varying current source and the other to an ammeter? Yes, the
ammeter will show deflection, proving that a current has been induced in
the second coil.

o Lo—

Primary Coil Secondary Coil

So can we just place many coils in the proximity of a current carrying coil
and induce current in all of them? Yes, that’s possible. Wait! Did we just
invent a new method to generate electricity?? Unfortunately not, there’s a
catch in all this, called mutual induction. When we induce a current in the
secondary coil, this current will produce itself produce a flux in the
secondary coil. This flux will link with primary coil, inducing an EMF. So
this is a mutual process. To sum up, the primary induces a voltage, therefore
a current in the secondary, which in turn will induce a voltage and a current
back in the primary.



The catch is that the current induced back in the primary will be in the
opposite direction as the original applied current in the primary, thus
reducing the overall effect. This isn’t a wild theory or anything, it’s a direct
consequence of the law of conservation of energy. In electromagnetics it’s
called the Lenz’s law. Lenz's Law ensures that the electrical energy of the
primary coil is reduced by the same amount as the energy gained by the
secondary coil. In layman’s terms, an induced effect is always such as to
oppose the cause that produced it.

Electromagnetic induction is the principle behind the working of devices
like transformers, motors etc.

Now there’s another type of Inductance called Self Inductance. We’ll study
about it in detail in the next section.

6.2 INDUCTOR

Inductor is the final member of our amazing trio that includes the resistor
and the capacitor. Like the other two components, the inductor is practically
used everywhere. Have you seen a copper coil in an electronic circuit??
That’s the inductor, that’s right it’s just a coil, nothing else.



Inductor like the capacitor is an energy storing device, but it uses a
completely different mechanism to do so. While the capacitor stores energy
in the form of electrostatic energy, the inductor stores its energy in the form
of magnetic energy. Despite this, Inductors aren’t primarily used as a
storage devices, they are commonly used as filters and chokes. That’s
because Inductors have the ability to suppress variation in current flowing
through it.

The inductors ability to resist variation in current can be attributed to a
phenomenon called Self Induction. The phenomenon can be better
understood with the help of the figure below.



Consider just two loops of an inductor coil. When a current is passed
through the inductor or more specifically the first loop of the inductor, it
produces magnetic a field around it in a concentric manner (as with any
other conductor). This magnetic field created by the first loop also links
with the second loop, because of their proximity. The natural response of
the second loop to this magnetic field, is to produce a current (or a counter
magnetic field as represented by the bottom ring) such as to oppose the
original current, in accordance with the Lenz’s law. The direction of the
current induced in the second loop due to the field generated by the first
loop is show by the dotted arrow. These currents will be generated
whenever there is a variation in current in the inductor and it opposes the
original inductor current. So this ability of an Inductor to oppose change in
current is called the Self Inductance or simply Inductance. It is denoted by
the letter L and its unit is Henry (H).

Our analysis was just with 2 loops, but the inductance will increase if the
number of winds in the coil is increased since the magnetic field from one
coil will have more coils to interact with. So self-induction in a way, is the
mutual induction between the loops of an inductor coil.



The commonly used symbol for an Inductor is,

L

m_

6.3 INDUCTORS IN SERIES

For inductors in series, the total inductance is simply the sum of individual
inductances, just as with resistors in series.
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YN\

®

L =L+ L+ + L,

Do note that this result is under the assumption that the magnetic fields of
the inductors do not interact with each other.

6.4 INDUCTORS IN PARALLEL



For a parallel combination of inductors, the reciprocal of the equivalent
inductance is the sum of the reciprocals of the individual inductances, just
as with resistors.

Once again, this result is under the assumption that the magnetic fields of
the inductors do not interact with each other.

6.5 CHARGING & DISCHARGING OF
A INDUCTOR

Like the capacitor, it takes some definite time for the inductor to become
fully charged. When an uncharged inductor is connected to a DC source, it
acts as an open circuit and the voltage across it is equal to the applied
voltage, then the voltage exponentially decreases to zero after a while. On
the contrary, the current flowing the capacitor initially is zero. Later as the



time passes, the current builds to a maximum value and acts like a short
circuit. How fast the capacitor charges up depends on any resistance present
in the circuit.

Charging of a Inductor

A fully charged inductor will discharge in exactly the reverse manner, the
voltage picks up and the current drops exponentially.

Discharging of a Inductor

Vi == Imax

6.6 ENERGY STORED BY AN
INDUCTOR



The EMF induced across the inductor due to variation in current (which
leads to change in flux) is given by,

V=Lm_

Therefore the instantaneous power which must be supplied to initiate the
current in the inductor is,

P=V|=L|E

— dW =Pdt = Li di

To find the total work done, we need to integrate this quantity from O to the
maximum charge I.

W = [/ Li di







7. AC FUNDAMENTALS

7.1 INTRODUCTION TO AC

So far we have only discussed about DC circuits and its analysis. Now we’ll
turn our attention to AC circuits. AC stands for Alternating current. AC is
of interest to us, because 90% of supply used for commercial purposes is
AC.

DC supply, we dealt with so far had constant magnitude and direction
(positive to negative). A DC source like your car battery will always have a
constant magnitude between its terminals. Its positive and negative
terminals will always remain as it is. On the contrary, for AC supply like
your power outlet, both magnitude and direction changes periodically. The
whole process takes place in 2 parts or 2 half cycles, Positive half cycle and
the negative half cycle. In the positive half cycle, the voltage (and therefore
the current) will gradually increase from O to a max value, then starts
decreasing back to zero. The same thing happens in the negative half cycle,
but in reverse direction. Reverse direction?? So does the current flows from
negative to positive terminal in the negative half cycle?? No, it doesn’t
happen that way. It’s the terminals that change its polarity. The terminal that
would have been positive in the positive half cycle changes to negative in
the negative half cycle and similarly for the other terminal. This essentially
means that there is no fixed Positive and Negative terminals for AC supply.
A terminal can have one polarity in a half cycle and the opposite polarity in
the other half cycle.



Voltage Voltage
(or Current) (or Current)

DC

AC

Positive Half Cycle (A—>B—>C)

AC is complex, DC was straightforward. Why would we even bother
generating AC? That would be the obvious question on your mind at this
point. The answer is simple, it’s a way lot easier to generate, transmit and
manipulate AC supply. Unfortunately for us, this simplicity in operation
doesn’t translate into easier math.



So far we have discussed about variation of voltage in AC supply, but not
about the pattern of this variation. Does the voltage shoot up to a max value
all of a sudden and fall back to zero again or does it follow a triangular
pattern??
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All these patterns are called waveforms. A waveform is basically a plot of
a quantity (in our case voltage/current) against time. All these waveforms
shown in the figure above and many more, are definite possibilities and
many of them have real practical applications. But the pattern or waveform
of our interest at least in this book, is the sine waveform. For commercial
AC supply pure sine wave is the most preferred waveform, because it’s
easier to generate and mathematically simpler to analyze.

7.2 TERMINOLOGY RELATED TO A
WAVEFORM

7.2.1 Instantaneous value

The value or the magnitude of an alternating quantity at a particular instant
of time is known as its instantaneous value. For example, in the Voltage-
time waveform, the instantaneous values of voltage at instants t, t,, t,are v,

v, and v, respectively. Instantaneous quantities are always denoted by small
letters (v, e, i etc.)



Voltage
45 V,

7.2.2 Cycle

A Cycle is a portion of a waveform, which when repeated makes up the
entire waveform. In the figure below, the shaded portion is the only unique
part of the entire waveform, rest of the waveform is just repetitions of this
portion. A more formal definition would be: an alternating quantity is said
to have completed a cycle when it goes through the entire range of positive
and negative instantaneous values without reoccurrence. Obviously it goes
without mentioning that the concept of a cycle is only relevant to periodic
waveforms like the sine waveform. Do note that a cycle needn’t start from
zero value and end at zero value. It’s only for convenience. For example,
V_. tothe next V__ is also a cycle.



Voltage

time

7.2.3 Time Period

The time period is the time taken by an alternating quantity to complete one
cycle. In other words, a cycle of an alternating quantity repeats after every
T seconds, where T denotes the Time period.

7.2.4 Frequency

The number of cycles completed by an alternating quantity in a second is
known as its frequency. It’s measured in cycles per second or Hertz. So a 60
Hz supply means that the waveform complete 60 cycles in a second. It is
denoted by f. Did you notice something interesting?? The definitions for
Frequency and Time Period were kind of the reverse of each other. One is
the time taken for a cycle and other is the number of cycles per time. That’s
because Frequency and Time Period are inversely related quantities i.e.

.1
- f



So as the frequency increases, time period decreases and vice versa.

L

|

vl

e
More Time Period, Less Time Period,
Less Frequency More Frequency

7.2.5 Amplitude

V1

VY

Amplitude is the maximum value (positive or negative) attained by an

alternating quantity during its cycle.

7.3 EQUATION



Now that you have a basic idea about alternating quantities, let’s talk math.
The general equation for an AC sinusoidal voltage is:

v=V__ sin(wt)

This equation can be understood better, if we take a look at the working of a
generator.

v

Inside a generator a coil is made to rotate with the help of external forces
like water or steam or other form of energy. As the coil moves within a
magnetic field, voltage is induced in the coil, this is the basic working. The
voltage induced is a function of the sine of the angle (©) the coil makes
with the center line. When the coil is along the center line, no voltage is
induced and when the coil is at 90 degrees to the center line, max voltage is
induced. It is better to represent the voltage as a function of time instead of
the physical angle of the coil, so the term ?? t is used. It is usually
measured in radians.

Going back to the general equation, v represents the instantaneous value of
the voltage and V__ represents the amplitude of the voltage waveform.



7.4 AVERAGE VALUE

Average value is a pretty common and useful concept in technical fields, yet
its meaning is often misunderstood. Imagine sand piled up in the form of a
mountain over a certain distance, then the average value is that height
obtained if the same distance is maintained while the sand is leveled off.

Average Height

From observation itself, it is pretty clear that the average value of the sine
waveform over a full cycle is zero. So for symmetrical waveforms such as
the sine waveform, the average value is calculated over a half cycle rather

the full cycle.




n '
Area under the curve _ [, V,, sin(wt)
Length of the base -0

Average value =

_Vp[-cos(wt)]F V[ cos(m)+ cos(0)]
m m

7.5 RMS VALUE

For a long time, AC was thought to be a useless form of electricity,
primarily because its average value is zero over the full cycle, but
experiments showed otherwise. When an AC current is passed through a
wire, the wire gradually heated up, showing that power is being delivered.
How is that possible?? It’s possible because both Voltage and Current are
changing direction simultaneously and power being the product of these 2
quantities, power is always delivered. Consider this ridiculous example, say
someone punched in your face, then he decides to you punch on the back of
your head, but if you turn around at the exact moment, you’ll once again be
punched in the face. So as long as both you and the attacker moves
simultaneously, all the punches are delivered at the same place, your face
(Ouchh!). Similarly as long as both current and voltage have same
direction, their product is always positive, hence the power is always
delivered.

The electrons are forced to switch direction ever so quickly that they
practically remain still and yet power is being delivered by them. Getting an
intuitive feel of how AC power is delivered is not the easiest of tasks, but a
water analogy might help. When you throw a rock into a pond, the ripples
formed will travel throughout the pond causing leaves and other debris to



oscillate on the water’s surface. This means that energy has been transferred
from the rock to the floating leaves, even though no single water molecule
has actually travelled all the way from the rock’s impact point to the
floating debris. The energy is carried by the waves formed on the water’s
surface, in which chains of water molecules push and pull on each other in
succession, transferring energy without actually moving anyone around.

By now it should be pretty clear that average value is not the most effective
parameter to measure AC. So we need a better parameter to quantity AC, it
is called the RMS or Root Mean Square value. It is developed by
comparing the heating effect caused by DC and AC sources. The RMS
value of AC current is the magnitude of DC current which need to be
passed through a resistor, so as to produce same heat as the AC, for the
same duration of time. Say we pass an AC current through a resistor for 1
minute and measure its temperature and it’s found to be say 100°C. Now if
we connect a DC source to the same resistor for the same duration of 1
minute and the temperature is raised to 100°C. Then, that value of DC
current gives the RMS value of the AC current.
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Similarly,

Vrn

Vams = /2

Hence the RMS value of AC is 1/\5 or 0.707 times the maximum value.
When you measure the voltage of your power socket, the reading indicates
the RMS value. Unless specifically mentioned, all values related to AC
voltages and currents are RMS values.

7.6 PHASE

In our general equation, we have only considered sinusoids having zero

value at ?? t =0, ' and maximum value at ?? t T/ 2, 31/ 2 But this
needn’t be the case always, sinusoids can be shifted to the left or the right as
shown below.
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The waveforms are identical in all aspects, but the second waveform starts
earlier than the first, and the third waveform has a delayed start than the
first. In other words, the second wave leads the first wave and the third
wave lags the first. The lead or lag of a waveform is denoted by ¢ known as
the phase angle.

Considering this concept of phase angle, we can modify the general
equation for an AC sinusoidal voltage as,

V= Vmax Sin(wt t ¢)



The difference between phase angles of 2 sinusoids is called the phase
difference.

7.7 COMPLEX NUMBERS

DC circuit analysis we did so far were pretty easy, because voltages and
currents could be added or subtracted directly, but now that we introduced
the demon called phase, things are about to get a little trickier. To tackle this
problem, we need the help of a mathematical tool called complex numbers.

Complex numbers can be represented in 2 forms:

1. Rectangular Form: It’s the most commonly used representation for
complex numbers. Note that in electrical engineering, letter j is used
to denote the imaginary part, instead of i, to not get mixed up with
symbol for current.

C=X+jY
I X

Real Part Imaginary Part

Imaginary axis

Real axis



https://en.wikipedia.org/wiki/Complex_number

2. Polar Form: In polar form, a quantity is denoted in terms of its
magnitude and the angle it makes with the positive x-axis.

C=272140

[\

Magnitude Angle

Imaginary axis

Real axis

Converting between the two forms is very easy and will come in handy
later.



Rectangular to Polar Form

Z=VX?+Y?
9 =tan~1Z
X

Polar to Rectangular Form

X=2Zcos#
Y=Zsin®@

7.8 OPERATIONS USING COMPLEX
NUMBERS

7.8.1 Addition/Subtraction:

Complex Addition/ Subtraction is as easy as they some. To add two
complex number’s, simply add the real and imaginary parts separately.
Similarly, to subtract two complex number’s, simply subtract the real and

imaginary parts separately.



If,
C, =X, +jY,and C, = X, +]jY,

Then,
GG =X EX)+i(Y, £ Y)

7.8.2 Multiplication:

To multiply two Complex numbers in rectangular form, each term of the
first complex number is multiplied separately by each term of the second
complex number. Then the real parts and the imaginary parts are separated
out to obtain the product complex number.

C1.G = (Xy #jY1).(X; +]Y,)
=X, X, + XY, + V. X, + Y5 Y,
= (X X5 - Y1Y,) + (XY, + X,Y,)

Complex multiplication is a lot easier in polar form, the magnitudes are
multiplied and the angles added algebraically.

C,C,=2,£0,.2,20,

= /7,7, 4(91 + 92)



7.8.2 Division:;

In rectangular form, Complex multiplication is done by multiplying both
the numerator and denominator with the denominator of the denominator

and separating out the real and imaginary parts.
C _ X+ ]:Y1) (X, - ]:Yz)
G (X +iY)(X; -jYy)

In polar form, the magnitudes of the numerator is divided by the magnitude
or the denominator and the angle is subtracted from the other.

C, Zz0,

C, ~Z,z.0,

Zy
ZZ

£(6,—06,)

In the next chapter, we’ll put all that we learnt in this chapter in
understanding AC circuit further.






8. AC CIRCUITS

8.1 AC THROUGH RESISTANCE

Before we delve into the deep end, we will study the behavior of AC when
passed through our amazing trio of resistors, capacitors, and inductors and
build from there. Resistance is the easiest component to analyze in AC
circuits, because it behaves the same way for DC as well as AC.

Consider the circuit shown below, where an AC voltage v =V _ sin (Dt) is
applied across a resistor R.

V_, sin(wt)( ~

Obviously a current will flow through the circuit, which as per the ohms
law is given by,

v V,_, sin(wt)
R R

= (VT{”) sin (wt)



If you compare this equation with the equation for the applied voltage, you
can identify that the current and applied voltage are in phase (phase shift ¢
= 0) and also the maximum values are related as, I _=V_/R. Both the
current and the voltage waveforms are exactly the same and only difference
is that the voltage waveform is R times bigger than the current waveform,
as shown below.

8.2 AC THROUGH INDUCTOR

We have learnt that, an inductor is a component that resists change in
current, due to its self-inductance property. When an Inductor is connected
to an AC source, the current will repeatedly change in the magnitude and
direction. The inductor will try to oppose this change by inducing a voltage
across it, which limits the current in the circuit. This opposition due to the
inductance is called inductive reactance. Inductive reactance is denoted by
the symbol X, and is measured in ohms.

Inductive reactance is dependent on the frequency of the applied AC
voltage, as given by the relation,

X =wlL=2mrfL



As the frequency of the applied voltage increases, the Inductive reactance
increases and hence the voltage drop across it also increases. The inductor
can be thought of as a variable resistor, whose opposition to the current is
controlled by the frequency of the supply voltage.

Consider an AC voltage applied to a pure inductor (the coil offers no
resistance) of inductance L, as shown in the circuit below.

V., sin(wt) | L

The current flowing through the circuit can be calculated as follows:



y di
L dt
Since the applied emf and the induced emf oppose each other,
V — 'VL

=>Vm Sina)t=L%
t

. V,, sinwt -V
i=] ”"an dt =—®cos wt

. V. . s
[ = X, sin(wt- 2)

This derivation itself isn’t very important, but what is important are these
conclusions than can be made from it.

1. Comparing the equation with that of supply voltage, it is obvious that
the current has a phase angle of T2 or-90° i.e.the current lags the

applied voltage by /2 or 90 .

2. The maximum magnitude of current is related to the maximum
magnitude of the applied voltage as,

Vin
XL

Im
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8.3 AC THROUGH CAPACITOR

When an AC voltage is applied to a capacitor, a voltage is developed across
its plates, as the electrostatic charge is built up. This impressed voltage
opposes the applied voltage and limits the flow of current in the circuit.
This opposition caused by capacitance is called capacitive reactance (X.)

and is measured in ohms. It is similar to Inductive reactance in a lot of
ways, but the key difference is that the capacitive reactance opposes the
change in voltage, whereas the inductive reactance opposes the change in
current caused as a result of the applied voltage.

Capacitive reactance is also frequency dependent, as given by the relation,

1 1
Re=0C= 24 C

Obviously as you can see, unlike inductive reactance, the capacitive
reactance is inversely proportional to the frequency of the supply voltage.
Why it is so, is beyond the scope of this book. Think of it this way, as
voltage changes faster, lesser the time for charge to accumulate, hence
lesser capacitive reactance.



V., sn(mt)%u) O —C

The current flowing in the circuit, shown above can be determined as

_dq_ dv
i P C dt
i=C d(VLnsin wt)
dt
d( sin wt)

=V_C 3. - V_wC cos wt

.V, . T
[ = X, sin(wt+ 2)

Again this derivation itself isn’t very important, but some inferences can be
made from it.



1. Comparing the equation with that of supply voltage, it is obvious that
the current has a phase angle of 2 or90° i.e.the current leads the
applied voltage by /2 or 90°.

2. The maximum magnitude of current is related to the maximum
magnitude of the applied voltage as,

!

¢ =90

8.4 IMPEDANCE

Impedance is defined as the opposition to the flow of alternating current in
a circuit. As we have seen, in a pure inductive circuit, the opposition was
the inductive reactance, in a pure capacitive circuit, it was the capacitive
reactance and in a resistive circuit it was the resistance. Similarly, in a
circuit with one or more of these elements, in any combination, the
impedance is the total current limiting element in the circuit. It is denoted
by Z and its unit is obviously Ohm.



As seen in the previous sections, the Inductive reactance introduces a phase
0 .
shift of -90 to the current and capacitive reactance introduces a phase shift

[}
of +90 to the current. Whereas the resistance doesn’t cause any phase
shift. Hence the inductive part of the circuit leads the resistive part of the

circuit by 90 ° and similarly, the capacitive part of the circuit lags the

o]
resistive part of the circuit by 90 . For this reason, Impedance is a complex
quantity that has a magnitude and a phase.

Here’s an example of a phasor diagram for a circuit containing all these
elements.

Xc

X, and X lie on the Imaginary axis of the complex plane. Therefore to
represent them, X, is multiplied by j and X is multiplied —j. Here are
some examples on how to calculate Impedance of a circuit.



NV ” m_ /=5-2j+3]=5+

——]] Z =-5]

[ Z=2-7]

By the way, impedances in series/parallel are calculated in the same way as
resistances in series/parallel.

Impedance inseries: Z=72,+7Z,+ 275 +...

1 1 1

1
Impedance in parallel: s === +=—+ =—+...
p p Z 1 Z2 Z3

Here are some more examples:



R=50 X =20 _2JX3J

T _
_—/V\/\/\‘ ] Z—5+( 2 3J)_5 6
X, = 30
X =10 X =60 T 3x—4]
L YW Z=j6i+ ()
—WN—— |, — 4]
I - 1.92 -6.44;

8.5 POWER & POWER FACTOR

As mentioned earlier in the book, electrical power is the product of voltage
and current. But how does this translate to AC circuits, where both voltage
and current both vary sinusoidally? Does the power also vary?

Generally if,

v=V_ sin(wt+0) &
i=1_ sin(wt+6,)

Then,

P .= % cos(q)

avg

Where, ¢ =0, - 0,



The term cos(@) is called the Power factor of the circuit.

Resistive circuit:

In the earlier section we saw that in a purely resistive circuit, the voltage
and the current are in phase. In the first half cycle, both voltage and current
are positive, therefore power is the product of these two quantities is also
positive in the first half cycle. Similarly, in the second half cycle, both the
voltage and current are negative, therefore the power is positive in this half
cycle too. Hence the average power is always positive in a pure resistive
circuit. In a purely resistive circuit, phase difference is zero, hence the
power factor is equal to 1.

Inductive circuit:

(o]
In a purely inductive circuit, the current lags the voltage by 90 . Therefore
the power factor is zero and consequently the average power is also zero.
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In the interval A, both the voltage and current are positive, therefore the
power is also positive. During this interval, the power is absorbed by the
inductor to set up a magnetic field. In the interval B, the current is positive,
but the voltage is negative, therefore the power is negative. Negative power
means the power is being returned back to the source, as the magnetic field
collapses. This process continues for the next 2 intervals C and D as well.
So it is very evident that over a full cycle, the average power absorbed by
the inductor is zero.

To sum up, a pure inductor doesn’t dissipate energy like a resistor, it only
stores energy in the form of magnetic field for a while, then releases it back.

Capacitive circuit:

o]
In a purely capacitive circuit, the current leads the voltage by 90 .
Therefore, similar to a purely inductive circuit, here too the power factor
and the average power are zero.
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In the interval A, both the voltage and current are positive, therefore the
power is also positive. During this interval, the power is absorbed by the
capacitor to build up charge and increase electrostatic energy. In the interval
B, the voltage is positive, but the current is negative, therefore the power is
negative. Now the capacitor starts discharging and the returns gathered
electrostatic energy back to the source. This process continues for the next 2
intervals C and D as well. So over the full cycle, the average power
absorbed by the capacitor is zero.

By now, you may have figured out that, resistor is the only component that
absorbs and dissipates energy, whereas inductors and capacitors can only
store energy for a while.

Returning to our earlier discussion, the power factor of a circuit tells us the
amount of resistance contributing to the total impedance of the circuit.
Mathematically,



R
COSQ = 7l

To sum up, the Electrical power in an AC circuit, depends on three factors:
Voltage, Current and the Power factor.

8.6 SERIES R-L. CIRCUIT

Before we close out this chapter, we’ll take a look at few circuits with
combinations of these components and their response to AC, to solidify
what we’ve learnt so far.

First stop is the RL series circuit, shown below.

R =50

= GD X, =70
1220

Since you are more or less familiar with complex number math at this stage,
we’ll go that route. The total impedance of this circuit is Z = 5 +j7 (Always
remember to multiply X, by j) and the current and the power factor can be

calculated as,



V_ 12
Z  5+j7
=0.81-1.13

cosQp = % =0.58

Generally, in an RL series circuit, the current lags the applied voltage by an

o]
angle less than 90 . If the resistance is very high compared to inductive
reactance, then the phase difference will be closer to zero and if resistance

is negligible, then the phase difference will be close to 90 . Inour
example, the current lags the voltage by 54.54°.

8.7 SERIES R-C CIRCUIT



Consider the example of an RC series circuit shown below.
R =2()

B V¥4 ¥ ) T

= CND | | x.=40
1020 Sy

The total impedance of this circuit is Z = 2 -j4 (Always remember to
multiply X.by -j) and the current and the power factor can be calculated as,

vV 10

'=Z777a
= 14j2

cos¢ = |;R| =0.44



Generally, in an RC series circuit, the current leads the applied voltage by

o
an angle less than 90 . If the resistance is very high compared to capacitive
reactance, then the phase difference will be closer to zero and if resistance

is negligible, then the phase difference will be close to 90 ° In this
example, the current leads the voltage by 63.89 °.

8.8 SERIES RLC CIRCUIT



The total impedance of the RLC circuit shown above is Z = 2-j. Hence the
power and the power factor can be calculated as:




j4
e

In the RLC circuit, the Inductive reactance and the Capacitive reactance
oppose each other. In our example, the capacitive reactance is more than the
inductive reactance, hence the current leads the voltage by an angle.

At a certain frequency called the resonance frequency, the inductive
reactance and the capacitive reactance become equal. Then the circuit
becomes a purely resistive circuit with capacitor-inductor combination
acting as a short. At resonance frequency, the capacitor and the inductor
exchanges energy back and forth, without effect the rest of the circuit.






9. ANALYSIS TECHNIQUES
(FOR AC)

9.1 VOLTAGE DIVIDER RULE

A lot of the laws and theorems used in this chapter and the next chapter are
very similar to what we learnt for DC circuits, but there are some
differences as well. So we’ll go through each of these with the help of
examples, rather than repeating the theory. This way you can get better at
handling complex number math.

In a series AC circuit, the voltage will be divided amongst the components
according to their impedance values, and to find the exact values, we need
to use the Voltage divider rule. Consider the RL series circuit shown below.
In this circuit the voltage applied by the source is divided amongst the
resistor R and an inductor L. The resistor offers an impedance Z, = R, and

the inductor L offers an impedance of Z, = jX, (in rectangular form), where
X, = ?? L.



_ \%
(Zl+Zz)
VZ VZ
“Vp= -2,V = =
ZT ZT

Were x is the component whose voltage we want to find out.

9.2 CURRENT DIVIDER RULE

As you already know, the current divider rule is to find the Current division
between components in a parallel circuit. This time we’ll use a parallel RL



circuit example to derive the result.

ILO(P '%Rl L |V

[ Z,Z,
(Z,+Z,)

&

Vi [ 2=

T 2 I — IZI
Z. (Z+Z) " (Z,+Z)

In general the Current divider rule for AC is,
= 12
X
Zx

9.3 SOURCE CONVERSION

Just like DC sources, AC voltage sources and AC current sources can also
be converted to one another. The process is the same, only difference is that
we need to use phasors in this case.



V=172 Cfv)

9.4 MESH ANALYSIS

Like we mentioned before, most of these techniques and theorems are same
as for DC and only different in math part, so will go through examples for
each of them than repeat the theory. Consider the following example:

10 £0 A




It’s easy to see that there are 3 loops or meshes in the circuit. Let’s assign a
mesh current to each of them and obtain 3 mesh equations using KVL.

10 £0 A
|3
-2Q 6()
I NV
1l

+
3 g Dor

Notice how there is a polarity given to the voltage source. Well, technically
AC doesn’t have a direction, we know that, but for analysis a direction,
which denotes to the direction in the positive half cycle, is often given.



Mesh 1: (8 - 2j+4j)1,—-4j1,=0
(8+2))1,=4j1,=0 e (1)

Mesh 2:-4j 1, + (4j+6) |, -6 1;,=-50 £ 30

Mesh 3:1;=-10 20

In mesh 1, current I, passes through all the components and current I,
passes through the inductor 4j, and because I, is in opposite direction to I,,
the voltage 4j1, has to be subtracted from the equation. Similarly currents [,
and I, has to be considered in mesh 2 along with its mesh current I,. Also

the current direction we assumed is entering into the positive terminal of the
voltage source, hence the negative sign for the voltage source in the
equation. Mesh 3 equation is easy because it has a current source, all we
need to do is equate I, to it (they are in opposite direction though).

It is not necessary to assume mesh currents in clockwise direction, it can be
chosen as per your wish, only thing is the equation should be formed
accordingly, the results will be the same.

Now the equations can be solved easily using the Cramer’s rule, to find the
currents.



Converting the quantities to polar form

-504£30 =-43.3 - 25j

-10£0 =-10
0 —4j 0
-43.3-25] 4j+6 -6
=8 _L -10 0 1
1 A 8+2) —4] 0
—4j  4j+6 -6
0 0o 1

-5.969 £65.45°

Do note that this circuit can be solved in multiple ways, for instance,

converting the current source and the 6% resistor to a voltage source, would
reduce the circuit to a 2 meshes, which is significantly easier to solve (Sorry
it’s better to learn the hard way).Concepts like Super Mesh analysis are
applicable for AC too.

9.5 NODAL ANALYSIS

Now let’s try to solve this circuit using nodal analysis, the procedure is
same as with DC.
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The first step is to identify the nodes and to select a reference node
(Remember that node is a point where 2 or more components meet).

0.5Q0  Node1 20 Node 2
N\ —g
+
12 40\/@ 10Q ——D) 4/0A

Reference Node

Unlike our last example, the impedance values are not in the complex form,
so we to convert them before proceeding further. It’s simple, just add j
before inductive impedance and add —j before capacitive impedance and
leave resistance as such. Then assign voltages to the nodes and use KCL to
form equations for each node.



05Q v, 20 v,

I VAVAVA

=
12,0V @ j100 =61} 4,20 A

Reference Node

Node 1: 0% + 10 5 0

(25-)V, -5V, =240 @
Node 2: Vs 2_V1)+ _\;% +4=0

-3V, +(3+)V, = -24 IR €)

When forming the equations, assume that all currents flow away from the
node. After the equations are obtained, proceed as we did in the last
example using the crammers rule.






10. NETWORK THEOREMS
(FOR AC)

10.1 SUPERPOSITION THEOREM

If you recall correctly, we used the superposition theorem to convert circuits
with multiple sources into circuits with single sources. Here too we are
doing the same, we are eliminating the other sources in the circuit and
analyzing the circuit and repeating the same for the other sources and
finally adding up the results.

Consider this example, it has two voltage sources and suppose we are
required to find the current through inductor.
20 5() -j12€)
1]

AW AW

10./_0\/@ Il =2j100 6+j8V

This is an ideal situation to use the superposition theorem, even though this
circuit can be solved in plenty ways, including the techniques we learnt so
far and the one’s we are going to. The first task while using the
superposition theorem is to remove the energy sources than the one under
consideration. This can be done by shorting the voltage sources and
opening the current sources. In this example, we can obtain 2 circuits, as
there are 2 sources.



For a while let’s consider only the 10[JO V source and we get this circuit.
20 50 120
1

NV

1020V Ll =2j100

Let’s use mesh analysis to solve this circuit.
Mesh 1: (2+j10)1, —j10l, = 10 £0
Mesh 2: —j10I, + (5-j2)I,=0

Solving the equations we get, I, = 0.29-j0.25 and I, =0.24 + j0.68.
Therefore,

l.,= 1, -1, = 0.04 —j0.93

Now let’s shift our focus to the second voltage source.

20 50 120

NV NN—]| )

Lol =100 @6“8"




To solve this circuit, let’s use ohm’s law and KVL.

= (jIO')(Z) +5 —j12
2410

=6.9-j11.6 Q)

_ 648
"~ 6.9—j11.6

L = 6+j8-5+j12  1+j20
X2 j10 ~j10
=2-j0.1

Now that we have analyzed the circuits separately, let’s combine the results.
So the current through the inductor is,

l=1,+1,=2.04-j1.03

The superposition theorem may seem a little complex and
cumbersome, and that’s probably true, but nonetheless it’s a handy
tool to use in analyzing certain types of circuits.

10.2 THEVENIN THEOREM



Thevenin’s theorem states that, any two-terminal, ac network can be
replaced by an equivalent circuit consisting of a voltage source and a
series impedance. This is essentially the same as Thevenin’s theorem for
DC, except that we use Thevenin impedance here.

Consider the circuit shown below, now let’s try to find the current through
the 4 Q resistor. The steps are the same as for DC, but we’ll go through
them once again.

i80Q)
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1. Identify the part of the circuit whose equivalent you need to find and
then temporarily open circuit the load impedance (4 Q resistor in our
case).



2. To find the Thevenin equivalent Impedance (Z;,), remove all the

energy sources in the circuit. This can be done by short circuiting the
voltage sources and open circuiting the current sources.
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3. Now the equivalent impedance between the terminals will give us the
Thevenin equivalent impedance. Here the inductor and the capacitor
are in parallel, therefore Z,; =(j8)(-j2)/(j6) = -2.67j

4. To find the Thevenin equivalent voltage (V ), energy sources are

returned to their original position and then the open circuit voltage
across the terminals is determined (V, = -3.33V).



5. Finally put the resistor back in its place and we are ready to draw the
equivalent circuit.

Z, =-2.67j Q

_|_

Vip = Cr-._,) | 4()
-3.3320

Finding the current through the resistor in this circuit is now a piece of cake
(I=-0.57-j0.38 A).

10.3 NORTON’S THEOREM

Norton’s equivalent circuit is essentially the source transformed version of
the Thevenin’s equivalent circuit. Using Thevenin’s theorem, we could
replace a complex portion of a circuit by a voltage source in series with an
equivalent impedance, whereas using Norton’s theorem, we could replace
the circuit by a current source in parallel with an equivalent impedance.

Let’s use the Norton’s theorem on our last example and spot the similarities
between the two theorems.

1. Repeat all the steps and find Z,. Norton’s equivalent impedance is
same as the Thevenin’s equivalent impedance.

2. To find the Norton equivalent current (1), energy sources are returned
to their original position and then the closed circuit current through
terminals is determined.
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When the load is shorted, the capacitor is also shorted out. Hence the
Norton equivalent current is given by I, = 10/j8 = -1.25j

3. Finally put the resistor back in its place and we are ready to draw the
equivalent circuit.

40
= CD 2, =-2.67] Q)
1.25j A

The current through the resistor can be found using the Current division

rule. I = (-1.25j)(-2.67j)/(4-2.67j) =-0.57-j0.38 A, which is exactly the value
we obtained using the Thevenin’s theorem.



10.4 MAXIMUM POWER TRANSFER
THEOREM

All the theorems stated so far were pretty much the same as for DC, but this
theorem is slightly different, the idea is the same, the math part is
significantly different.

Maximum Power Transfer Theorem for AC states that, maximum power
will be delivered to a load when the load impedance is the conjugate of
the Thevenin impedance across its terminals. The statement is all sorts of
confusing, where did the conjugate term come from? Let’s try to prove this
theorem our self to get a better understanding.

Suppose we reduced a random circuit to its Thevenin’s equivalent and
connected a load impedance across it, we get a circuit like this.

Zry = Ryy + jXqy

Vi Z =R +]X,

The current through this circuit will be,

| = VTH - VTH
Zry+Z, RARH(X +X)




Hence the power delivered to the load impedance is given by,

P, = Vi’ Ry
(RUHR )2+ (X +X1p)?

Notice how there is only R, term in the numerator and the X, term is
missing, that’s because the reactive part of the impedance doesn’t consume
any power over the full cycle. To get the condition for max power, we need
to differentiate the P, with respect to X, (I’m not going to, but you should)
and equate it to zero. Then we get the condition X, + X, =0 i.e. X, =- X
Substituting this relation in the power equation, we obtain a simpler
expression.

TH*

_ Vnl R
- (R+Rpy)?

P

To get the next condition for maximum power transfer, differentiate the P,
once again, this time with respect to R; and equate it to zero, it’s much
easier this time. This time we get the condition R; + R;; = 2R, i.e. R, =R,

So the two conditions for Maximum power transfer in AC circuits is,
R =Ry & X = -Xqy
Combining the 2 we get,
Z, = R+ X = Ryy = jXgy

. — 7%

"t ZL =7 TH




To sum up, maximum power can be transferred from source to the load in
an AC circuit, if the resistive part of the source and the load are the same
and the reactive parts cancel each other out.






11. LAPLACE TRANSFORM

11.1 INTRODUCTION

So far we dealt with DC circuits and sinusoidal AC circuits in steady state
(more on this in the next chapter). But in most real life circuits, the sources
may not always be sinusoidal and quantities of interest in these circuits may
be in transient state etc. So the math we used so far will prove inadequate to
deal with these circuits. The way to deal with such circuits is to model them
with the help of differential equations.

Perhaps an example will make things more clear.

R L

4/\/\/\/\—%\—
Vs(t)<> i(t) C =y

Consider this simple RLC circuit with a voltage source v (t) and suppose
the current through the circuit is the quantity of our interest. Using KVL,

v (t) = vy + v, + v... The voltage across each components can be replaced by
the relations shown in the table below (memorize this table). This is done to
make each term a function of current i(t), which is common to all
components, as this is a series circuit.



Voltage across the component Current through the component

Resistor Vg = ig R i = %
Inductor di .1
v =Lgt i =7/ vt
Capacitor 1. . _dv
P VC=Ef|Ldt IC:Cd_tC

Now the KVL equation becomes:

c c;(tt) = [i(t)dt

To remove integral, differentiate both sides,

dvt) _ . dift) , | d2ift)
&t RYgt *lge '(t)

v(t)=Ri(t)+L

This is the differential equation for this particular circuit. There are lots of
advantages to modelling circuits this way. For one, this equation is a
general one, it is applicable to any kind of source voltage, DC or sinusoidal
AC or any other waveform. Also a lot of inferences can be made just from
the nature of the differential equation. For instance, the equation in our
example is a second order differential equation and that is enough
information to predict the general behavior of this circuit to various inputs.

The only problem with this method is that, solving differential equations
isn’t the easiest of tasks and not everyone’s an expert in calculus. But
luckily there’s an easier way to solve differential equations, using Laplace
transform.



11.2 LAPLACE TRANSFORM

The Laplace transform is a well-established mathematical
technique for solving differential equations. It is named in honor of
the great French mathematician, Pierre Simon De Laplace. Like all
transforms, the Laplace transform changes a mathematical function
into another according to some fixed set of rules or equations.

Before we dig into Laplace transform, let’s look into transforms in
general. So what is a transform? Why do we need them?

Let’s begin by considering a simple computational problem:
compute the value of x = 3.4%4 . It is not easy to get the exact value
using straightforward methods. What we can do to make this
problem solvable is to take natural log on both sides: now the
equation becomes In(x) = 2.4 In (3.4). Now the value of In(x) can
be easily obtained from a log table. And to obtain the value of x, all
we have to do is to take the antilog of the value obtained. What we
did was to take the hard problem, convert it into an easier
equivalent problem. This is the very idea behind transforms. The
concept of transformation can be illustrated with the simple
diagram below:


https://en.wikipedia.org/wiki/Pierre-Simon_Laplace

Transf
Hard Problem | —_— Easy Problem

Easy solution

process
Solution to hard | Solution to easy
problem Inverse problem
Transform

What kind of transformation might we use with ODEs? Based on
our experience with logarithms, the dream would be a
transformation, it would be useful if some transformation allowed
us to replace the operation of differentiation by some easier
operation, perhaps something similar to multiplication. This is
exactly what the Laplace transform is used for. The Laplace
transform, transforms the differential equations into algebraic
equations which are easier to manipulate and solve. Once the
solution in the Laplace transform domain is obtained, the inverse
Laplace transform is used to obtain the solution to the differential
equation.

The Laplace transform of a function f(t), denoted as F(s), is defined
as:



F(S):/O ft)e st

This equation looks menacing at first glance. But fortunately, most
times you don’t need to use this equation, you can easily get away
with knowing some standard results and some properties.

11.3 PROPERTIES OF LAPLACE
TRANSFORM

Some of the basic properties of Laplace transform are listed here,

Operation in time domain

Linearity a; X, (t) +a, x,(t) a; X,(s) +a, X,(s)
Differentiation " x(t) s" X(s) =s"1 x(0) .... =x"1(0")
dt"

Integration : X(s) , x"(0)

f x(t)dr s T s
Initial value x(0) =lim;_, o x(t) x(0) =lim sX(s)
theorem e
Final value theorem x(oo) =tlim x(t) x(0) =lin8 sX(s)

—00 S

Time scaling x(at) alX()
a



11.4 STANDARD LAPLACE
TRANSFORM PAIRS



f(t) F(s)
1 1
s
Constant K K
s
t 1
s?
tﬂ n!
sn+1
e at 1
s+a
e 1
) s—-a
e at ¢n n!
(3 -’ 8)0\0 1
sin wt w
s? 4+ @l
cos wt S
s?+ w?
e ™ sinwt w
(s+ a)"'+m2
e ™ cos wt (s+a)
(s+ a)2+n)2




11.5 INVERSE LAPLACE TRANSFORM

Finding the Inverse Laplace transforms of functions isn’t terribly difficult.
Most times Inverse Laplace transforms of functions can be figured out by
inspection. The general method to find the Inverse Laplace transforms of
functions is to express them as partial fractions and then make it into a
convenient form and figure out which function’s Laplace each term is.
Keeping the various properties of Laplace transform is very handy.

Here are some examples on finding Laplace Inverse: Link

11.6 SOLVING DIFFERENTIAL
EQUATIONS

We started with Laplace transform as an easier method to solve differential
equations. The procedure is best illustrated with an example.

Example:

f () + 3 £(t) + 2 f(t) = e, with the initial conditions f(0) =
£2(0) =0


http://tutorial.math.lamar.edu/Classes/DE/InverseTransforms.aspx

f(t) + 3 £(t) + 2 f(t) = €7 y I
: _ 1 Taking Laplace
s*F(s) +3s F(s) +2 F(s) = s+1 transform on both
1 1

F(s) = S+1 s%+3s5+2 Sl

Decomposing into partial fractions,

1 1 1
FS) = o5~ o7t ey
s+2 s+1 (s+1)

Taking Inverse Laplace
f(t) = e?t- e+ te! gmm=== transform on both
sides

At first glance, this may not seem any better than differential equations, but
trust us, using Laplace transform is very easy with some practice. Here are
more examples to practice: Link

11.7 MODELLING CIRCUITS IN S-
DOMAIN

Once you gain enough confidence with Laplace transform, you don’t have
to find the differential equations for the circuits, then convert it into Laplace
transform. Instead you can form algebraic equations in the Laplace domain
or the s-domain, directly by inspection.

Voltage or current in an element in the circuit can be represented as given in
the table below. These are just the Laplace transforms of the relations from
the earlier table. With the differentiation and integration gone, the relations
look easier already. We have ignored the initial states of the components in
these relations (That’s for the next chapter).


http://tutorial.math.lamar.edu/Classes/DE/IVPWithLaplace.aspx

Component Voltage across the component Current through the component

Resistor V(s) = I(s)R (o) V(s)
R
Inductor V(s) =sL I(s) (s) = V(s)
sL
Capacitor i) = I(s) V(s) =sCI(s)
sC

Now we’ll try to model a circuit in the Laplace domain directly. What better
than our circuit from earlier, to try this out.

R L

(@]
|

Vi(s) I(s)




Using KVL,

V.(s) = R I(s) + sLI(s) + &)

sC
= sCV,(s) = I(s) [SRC + s?LC +1 |

< 1(s) = sC
= 1(8) = [EsZF RGs 71

Vs(s)

Modelling circuits in the s-domain has lots of advantages, it’s easier to
study stability, natural response, frequency response etc., but that’s more of
a control systems terro and we are not going into it. You can check out our
control systems book if you are interested: Control Systems for Complete
Idiots


https://www.amazon.com/dp/B079J13W49




12. TRANSIENT ANALYSIS

12.1 INTRODUCTION

A circuit whose circuit parameters or conditions remain constant, is said to
be in a steady state. But a circuit isn’t always in steady state, when a circuit
or a portion of the circuit is switched on or off, there is a sudden change in
circuit parameters (like amplitude, frequency etc.). A certain amount of
time is taken for these changes to take place, this duration is called the
Transient period and this phenomenon is known as Transient. Once the
transient period is over, the circuit settles down and attains the steady state,
if not disturbed further.

So when you switch on a circuit, there are 2 responses; one is the transient
response or the natural response and the other is the steady state response or
the forced response. All the circuit analysis we did till now was to find the
steady state response, we ignored the transient response. Transients are due
to the presence of energy storing elements (Capacitors and Inductors) in a
circuit. These elements don’t respond instantly to change in circuit
conditions.

12.2 TRANSIENT RESPONSE OF AN
RL CIRCUIT TO DC EXCITATION

Consider this initially uncharged inductor in series with a resistor. At t=0,
the switch S is closed. Being an initially uncharged inductor, the current
before the instant of closing, i(0") is zero. But as the inductor cannot quickly
respond to the change in current, the current at the instant right after the
closing of the switch, i(0") is also zero i.e.



Then the current that flows through the circuit can be found using
differential equation. Using KVL,

: di
V—IR+L&

This is a simple first order differential equation and can be solved easily,
but we’ll go with the Laplace transform approach. Do not forget to include
the initial value terms in the Laplace transform of the differential.



Taking Laplace on both sides,

Y=RI(s) + Llsl(s) ~i(0)
v
= 1(s) = s[R + Ls]

Writing the RHS as partial fraction,

I{s) = vii__ 1
R[s s+ R/L
. V V _Rt/
a8 p— i L
)=y~ .
Steady state Transient
response response

The equation just validates our discussion, that circuits have 2 responses,
steady state and transient. As t increases the transient response term
decreases exponentially and nullifies, leaving only the steady state
response. If you go by the methods used prior to this chapter, current value
by ohms law will give the result I = V/R, which is our steady state response.

The graph of the current response of this circuit will look like this:



The constant T = L/R is called the time constant of the circuit. This value
decides how fast this circuit will reach steady state. Typically current will
reach steady state after t = 5t. The important thing to note is that after the
brief transient period, Inductor acts as a short circuit (just like a normal
wire) in a DC circuit.

12.3 TRANSIENT RESPONSE OF AN
RC CIRCUIT TO DC EXCITATION

This time consider an initially uncharged capacitor in series with a resistor.
At t=0, the switch S is closed. As the capacitor cannot quickly respond to
the change in voltage, the voltage before and right after the closing of the
switch are the same i.e.

ve(0) =v(0*) =0






Current through the circuit,

i(t) = dvc

l(s)=C [SVC(S) - v(0)]
=Cs Vc(s) veeeee @

Using KVL,

V

E =R |{5} o VC{S} @
Substituting @) in ®

¥ = RCs V(s) + V()

V
Vels) = SREs 71

2ve(t)=V — Ve /RC

A

Steady state Transient
response response

This is the generalized expression for v(t) and the corresponding graph
looks like:



&
|
|
i

The constant t= RC is the time constant of this circuit. In a DC circuit, the
capacitor acts as an open circuit in the steady state.

12.4 EXAMPLE

Using a similar approach like in the last two cases, we can obtain the
general response for any circuit.

Consider this example, say the switch has been in position 1 for a long time
and then it’s moved to position 2 at t=0 and we are required to find the
voltage across the capacitor.



o 2
40V = 0.1F

6()

Since the switch has been in position 1 for a long time it’s in the steady
state, hence the initial voltage across the capacitor will be equal to the

applied voltage.



Ve(07) = v (0*) =40V
In position 2,

oo ~dv dv_
i(t)=C—£=0.1 It

dt

Using KVL,
ve+i(t) [R;+R,] =0

Taking Laplace transform on both sides,

Vc(s) +10x 0.1 [sV(s) =v(0)] =0
Ve(s) +sVe(s)— 40=0

40
Vels) = 155
S Ve(t) = 40e™

Similarly, the general response for any type of circuits including AC
circuits can be found.






13. 3-PHASE SYSTEMS

13.1 INTRODUCTION

There are 2 popular kinds of electrical systems, Single phase and Three
phase. In a single phase system, there will be live wire and a neutral return
path for the current to flow. In a three phase system, there will be 3 live
wires and a common neutral return path for the current. There are several
advantages to having 3 phase system over single phase; more power can be
delivered, cheaper to generate, transmit etc.
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Three phase voltage is generated with the help of 3 coils separated by 120 °
inside a generator. Due to this arrangement, the voltage induced on each

coil will lag the other by 120 ° Mathematically,

Vg
Vg = V,, sin(wt)
vy =V, sin(wt -120°) m -
Vg =V, sin(wt -240°) P&
I’

13.2 STAR CONNECTION

In a single phase connection, 2 wires are sufficient for transmitting power to
the load. But in a 3 phase connection, 6 terminals (2 ends of each phase) are
available to supply power to the loads. Using these 6 terminals individually,
like in single phase connection will prove expensive and unnecessary. There
are 2 better ways to connect three phase terminals to deliver power to the
loads.

First is the Star or the Wye Connection. In such a connection, one terminal
of each coil is terminated at a common point called the neutral. Loads can
be connected either between the phases or between the phase and the
neutral.



13.3 DELTA CONNECTION

Another possible way to connect coils is the Delta Connection. In such a
connection, the ending terminal of a coil is connected to the starting
terminal of the other coil, so as to form a closed loop as shown below. In
delta connection there is no common neutral point, so the only way to
connect load is between the phases.

R




13.4 LINE & PHASE VOLTAGE

While studying 3¢ circuits, two types of voltages can be defined; line

voltage and phase voltage (this applies for both connections). The potential
difference or voltage between any two phases is defined as the line voltage.
It is denoted as V,. And the potential difference between any one phase and

neutral is called phase voltage. It is denoted as V .

In a delta connection, there is no neutral point, hence the line voltage and
the phase voltage are the same. But in star connection, these are two
different quantities, whose relation can be derived as follows:

R Consider phases R &Y,
V|_ VRN = VphAO = Vph ,V y
- —V3
" Vyy = Vpns-120 = =20 + j—-20
Vi = Vey— Vi
— 3Vph -_V{gvgh
2 I
B
VU= V3 Vgl

Point to note is that, in a delta connection, the line voltage is higher than the
phase voltage.

13.5 LINE & PHASE CURRENT

Similar to voltage, current can also be defined in 2 ways in a 3¢ circuit.
Current flowing through the coil (or the load) is called as the phase current



(I,,) and current flowing through any line is called line current (I,).

In a star connection, the line current and the phase current are one and the
same. But in delta connection, these are two different quantities, whose
relation can be derived as follows:

I Consider the line R,

i
. [ T 20
lyy = lp2-120 = "'znh + j_\glph
Y
I =1z =g
3l V3l
=72 I3
B

1= V3 1]

Thus in a delta connection, the line current is higher than phase current.

13.6 LOAD CONNECTIONS

Loads can also be connected in several ways in a 3¢ system as shown
below (there are still more connections). The appropriate connection is
chosen according the voltage and the current requirements of the load. Each
connection has certain advantages and disadvantages.



A-A Connection Y-Y Connection

AN,
y ¢

A-Y Connection Y-A Connection
If the impedances or the loads are equally distributed among the 3 phases,
such a load is called balanced load.

For Balanced Load,
Z — Zl - 22 —_ 23

13.7 POWER

Three phase power in a circuit is given by:



P=+3V, | cos¢
P=3V,, |, cosp

These equations are applicable to both star and delta connections.
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